We need to prove that:
$$3\sqrt2\sum_{cyc}\sqrt{\frac{a^3}{7a^2+2b^2}}\leq\sum_{cyc}\sqrt{a+b}.$$
Now, by C-S
$$\sqrt{\frac{a^3}{7a^2+2b^2}}\leq\sqrt{\sum_{cyc}(7a^2+2c^2)\sum_{cyc}\frac{a^3}{(7a^2+2b^2)(7a^2+2c^2)}}=3\sqrt{\sum_{cyc}a^2\sum_{cyc}\frac{a^3}{(7a^2+2b^2)(7a^2+2c^2)}}$$
and by C-S again and by AM-GM
$$\sum_{cyc}\sqrt{a+b}=\sqrt{\sum_{cyc}(a+b+2\sqrt{(a+b)(a+c)}}=$$
$$=\sqrt{2\sum_{cyc}a+2\sqrt{\sum_{cyc}\left((a+b)(a+c)+2(a+b)\sqrt{(a+c)(b+c)}\right)}}\geq$$
$$\geq\sqrt{2\sum_{cyc}a+2\sqrt{\sum_{cyc}\left(a^2+3ab+2(a+b)(\sqrt{ab}+c)\right)}}=$$
$$=\sqrt{2\sum_{cyc}a+2\sqrt{\sum_{cyc}\left(a^2+7ab+2(\sqrt{a^3b}+\sqrt{ab^3})\right)}}\geq$$
$$\geq\sqrt{2\sum_{cyc}a+2\sqrt{\sum_{cyc}\left(a^2+7ab+2(2ab)\right)}}=\sqrt{2\sum_{cyc}a+2\sqrt{\sum_{cyc}\left(a^2+11ab\right)}}.$$
Thus, it's enough to prove that
$$81(a^2+b^2+c^2)\sum_{cyc}\frac{a^3}{(7a^2+2b^2)(7a^2+2c^2)}\leq a+b+c+\sqrt{\sum_{cyc}(a^2+11ab)}.$$
Now, we'll prove that
$$\sqrt{\sum_{cyc}(a^2+11ab)}\geq \frac{(a+b+c)\sum\limits_{cyc}(a^2+7ab)}{\sum\limits_{cyc}(a^2+3ab)}.$$
Indeed, let $a^2+b^2+c^2=k(ab+ac+bc).$
Thus, we need to prove here that
$$\sqrt{k+11}\geq \frac{\sqrt{k+2}(k+7)}{k+3}$$ or
$$(k+11)(k+3)^2\geq(k+2)(k+7)^2$$ or
$$(k-1)^2\geq0.$$
Id est, it's enough to prove that
$$a+b+c+ \frac{(a+b+c)\sum\limits_{cyc}(a^2+7ab)}{\sum\limits_{cyc}(a^2+3ab)}\geq81(a^2+b^2+c^2)\sum_{cyc}\frac{a^3}{(7a^2+2b^2)(7a^2+2c^2)},$$
which is true by BW.
Indeed, let $a=\min\{a,b,c\}$, $b=a+u$ and $c=a+v$.
After this substitution we obtain something obvious:
https://www.wolframalpha.com/input/?i=(x%2By%2Bz)(2(x%5E2%2By%5E2%2Bz%5E2)%2B10(xy%2Bxz%2Byz))-81(x%5E2%2By%5E2%2Bz%5E2%2B3(xy%2Bxz%2Byz))(x%5E2%2By%5E2%2Bz%5E2)(x%5E3%2F((7x%5E2%2B2y%5E2)(7x%5E2%2B2z%5E2))%2By%5E3%2F((7y%5E2%2B2z%5E2)(7y%5E2%2B2x%5E2))%2Bz%5E3%2F((7z%5E2%2B2x%5E2)(7z%5E2%2B2y%5E2))),x%3Da,y%3Da%2Bu,z%3Da%2Bv
Your second inequality is wrong.
Try $(a,b,c)=(4,1,2).$
By the way, the following inequality is true already and it's not so trivial.
For positives $a$, $b$ and $c$ prove that:
$$\frac{a^3}{14a^2+4b^2}+\frac{b^3}{14b^2+4c^2}+\frac{c^3}{14c^2+4a^2}\geq\frac{a+b}{37}+\frac{a+c}{37}+\frac{b+c}{37}.$$