1

$X_1,X_2,$.....are i.i.d standard uniform U(0,1),let $$N:=\min\{n \ge2 | X_n>X_{n-1}\}$$ $$T=\min\{n \ge 1 | X_1+...+X_n>1\}$$

We have conclusions that:

  1. $\mathbb{E}[N]=e$
  2. $\mathbb{E}[T]=e$

Conclusion 1 is easy to prove, but how about 2?

gt6989b
  • 54,422

1 Answers1

2

Here is the proof of conclusion 1: $$\mathbb{P}(N>n)=\mathbb{P}(X_1>X_2>...>X_n)=\frac{1}{n!}$$ $$\mathbb{E}[N]=\sum_{n=1}^{\infty}\mathbb{P}(N>n)=e$$

  • I use python to get conclusion 2, but I don't have specific proof, so I'm looking for the proof of conclusion 2. – 张心以 May 09 '19 at 13:30