Does $ L = \sum_{i=2}^{\infty } \frac{1}{n \log(n)} $ converge or diverge?
I established that: $$ L \le I = \int^{\infty}_{2} \frac{1}{n \log(n)} = \lim_{n \to \infty} [ \ln(\log(n)) - \ln(\log(2)) ], $$ and as $ \lim_{n \to \infty} \log(x) = \infty $, then $ L $ diverges.
But I'm not sure:
- of the sense of the inequality,
- about the conclusion.