Show that $\binom{n}{3} = \binom{n-1}{2} + \binom{n-1}{3}$
My solution
Formula: $\binom{n}{k} = \frac{n!}{k!(n-k)!}$
$LHS = \binom{n}{3} = \frac{n!}{3*2(n-3)!} = \frac{n(n-1)!}{3*2(n-3)(n-4)!} = $
$ = \frac{(n-1)!}{3*2(n-4)!}*\frac{n}{n-3} = \binom{n-1}{3} * \frac{n}{n-3} $
So i got one term right. Anyone know how i could continue from here? :)