What is wrong with my solution of the maximum value of $\displaystyle\sin \frac {A}{2} + \sin \frac{B}{2} + \sin \frac{C}{2}$ in a triangle ABC?
I am NOT after the answer.
I know that $\displaystyle \sin \frac {A}{2}\sin \frac{B}{2}\sin \frac{C}{2} \leq 1/8 $
And I also know that arithmetic mean is greater than equal to the geometric mean.
$\displaystyle \sin \frac {A}{2} + \sin \frac{B}{2} + \sin \frac{C}{2} \geq 3[{\sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2} }]^{1/3} $
$\displaystyle \sin \frac {A}{2} + \sin \frac{B}{2} + \sin \frac{C}{2} \geq 3/2 $
but this is wrong. Right is $ \sin \frac {A}{2} + \sin \frac{B}{2} + \sin \frac{C}{2} \leq 3/2 $
I am a high school student.
