Adding the first and the fifth, the second and the fourth, and finally the third, you will have
\begin{align}
\sin x + \sin (x+4a) + \sin (x+a) + \sin (x+3a) +\sin (x+2a) &=0\\
2\sin\frac{2x+4a}{2}\cos\frac{-4a}{2}+2\sin\frac{2x+4a}{2}\cos\frac{-2a}{2}+\sin (x+2a) &=0\\
\sin(x+2a)(2 \cos 2a + 2 \cos a + 1) &=0
\end{align}
As $x$ is unknown, then the second factor that must be zero. I will use a magic non-zero factor $\cos a -1$ here.
\begin{align}
2 \cos 2a + 2 \cos a + 1 &=0\\
4\cos^2 a +2\cos a -1&=0\\
(\cos a -1)(4\cos^2 a +2\cos a -1)&=0\\
4\cos^3 a - 2\cos^2 a - 3\cos a +1 &=0\\
2\cos^2 a -1 &= 4\cos^3 a - 3\cos a \\
\cos 2a &=\cos 3a\\
\cos 2a &= \cos (360^\circ -3a)\\
2a &=360^\circ -3a\\
5a&=360^\circ\\
a&=72^\circ
\end{align}