Define:
$$ I(n) = \sqrt{n}\int_{-\infty }^{\infty} \frac{1}{( 1+x^{2})^n} \, dx$$
I have to show that:
$$ \lim\limits_{n\to\infty}\sqrt{n} I(n) = \sqrt{\pi} $$
Classical solution:
Based on this answer we have a closed form for the integral:
$$ I(n) = \sqrt{\pi}\,\frac{\Gamma\left(n-\frac{1}{2}\right)}{\Gamma(n)}$$
Also from here we get:
$$\sqrt{n}\,\frac{\Gamma\left(n-\frac{1}{2}\right)}{\Gamma(n)} \to 1 \quad \text{as} \quad n \to \infty $$ Any other methods?