Calculate $$I=\lim_{a\rightarrow \infty }\frac{1}{a}\int_{0}^{a}\sin(x)\cdot \sin(x^2)\,dx$$
I tried to use the fact that $\lim_{x\rightarrow \infty }\frac{1}{x}\int_{0}^{x}(f(t))\,dt=\frac{1}{T}\int_{0}^{T}f(t)\,dt$ where $T$ is period of the function.
So in my case $T=2\pi$, right? So I have $$I=\lim_{a\rightarrow \infty }\frac{1}{2\pi}\int_{0}^{2\pi}\sin(x)\sin(x^2)\,dx=\lim_{a\rightarrow \infty }\frac{1}{\pi}\int_{0}^{\pi}\sin(x)\sin(x^2)\,dx$$
Now I noted $x=\pi-t$ so $$I=\lim_{a\rightarrow \infty }\frac{1}{\pi}\int_{0}^{\pi}\sin(\pi-t)\sin((\pi-t)^2)\,dt=\lim_{a\rightarrow \infty }\frac{1}{\pi}\int_{0}^{\pi}\sin(t)\sin((\pi-t)^2)\,dt$$
How to continue? Is my method correct?