Hint $\bmod 47\!:\,\ x^{\large 11}\equiv 5\,\overset{(\ \ )^{\Large 21}}{\Longrightarrow} x\equiv 5^{\large 21}\ $ by $\,11\cdot 21\equiv 1 \pmod{\!46}\,$ and little Fermat.
Thus $\,x\equiv \dfrac{\color{#c00}{5^{\large 23}}}{5^{\large 2}}\equiv \dfrac{\color{#c00}{\bf -1}}{25}\equiv \dfrac{-2}{50}\equiv\dfrac{45}3\equiv 15,\,$ by $\, \color{#c00}{5^{\large 23}} \equiv \left(\dfrac{5}{47}\right) = \left(\dfrac{47}{5}\right)=\left(\dfrac{2}{5}\right)= \color{#c00}{\bf -1}\,$
Or $\ x^{\large 23}\equiv -1\ $ by $\ (x^{\large 23})^{\large 11} = (x^{\large 11})^{\large 23} \equiv \color{#c00}{5^{\large 23} \equiv\bf -1}\, $ so $\ x\equiv \dfrac{x^{\large 23}}{(x^{\large 11})^{\large 2}}\equiv \dfrac{-1}{25}\equiv 15\,$ as above.
The first method raised $\,x^{\large 11}\equiv 5\,$ to power $\, \dfrac{1}{11}\equiv 21\pmod{\!46}\,$ to get the $11$'th root, using
$\!\bmod 46\!:\,\ \dfrac{1}{11}\equiv \dfrac{5}{55}\equiv \dfrac{5}9\equiv \dfrac{25}{45}\equiv \dfrac{25}{-1}\equiv 21,\, $ computed by Gauss's algorithm, as above.
In the second method instead of using $\,x^{\large 46}\equiv 1\,$ we use $\,x^{\large 23}\equiv -1.\,$ Here $\,1/11\,$ is simpler
$\!\bmod 23\!:\,\ \dfrac{1}{11}\equiv \dfrac{2}{22}\equiv \dfrac{2}{-1}\equiv -2\ $ so $\ 5\equiv x^{\large 11}\,\overset{\large(\ \ )^{\Large -2}\!}\Longrightarrow\, 5^{\large -2}\equiv x^{\large-22}\equiv \dfrac{x}{x^{\large 23}}\equiv -x$
See this theorem for the general result when the power is coprime to the order(s).