$\newcommand{\angles}[1]{\left\langle\,{#1}\,\right\rangle}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\half}{{1 \over 2}}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\iff}{\Leftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
\color{#f00}{\sum_{j = 0}^{n}{k - 1 + j \choose k - 1}} & =
\sum_{j = 0}^{n}{k - 1 + j \choose j} =
\sum_{j = 0}^{n}{-k + 1 - j + j - 1 \choose j}\pars{-1}^{j} =
\sum_{j = 0}^{n}{-k \choose j}\pars{-1}^{j}
\\[3mm] & =
\sum_{j = -\infty}^{n}{-k \choose j}\pars{-1}^{j} =
\sum_{j = -n}^{\infty}{-k \choose -j}\pars{-1}^{-j} =
\sum_{j = 0}^{\infty}{-k \choose n - j}\pars{-1}^{j + n} =
\\[3mm] & =
\pars{-1}^{n}\sum_{j = 0}^{\infty}\pars{-1}^{j}\oint_{\verts{z} = 1^{-}}
{\pars{1 + z}^{-k} \over z^{n - j + 1}}\,{\dd z \over 2\pi\ic}
\\[3mm] & =
\pars{-1}^{n}\oint_{\verts{z} = 1^{-}}
{\pars{1 + z}^{-k} \over z^{n + 1}}\sum_{j = 0}^{\infty}\pars{-z}^{j}
\,{\dd z \over 2\pi\ic} =
\pars{-1}^{n}\oint_{\verts{z} = 1^{-}}
{\pars{1 + z}^{-k - 1} \over z^{n + 1}}\,{\dd z \over 2\pi\ic}
\\[3mm] & =
\pars{-1}^{n}{-k - 1 \choose n} =
\pars{-1}^{n}{k + 1 + n - 1 \choose n}\pars{-1}^{n} =
{n + k \choose n} = \color{#f00}{n + k \choose k}
\end{align}
Using $\binom{n+k-1}{k}$,repeat the procedure till $\binom{k-1}{k-1}$.
1)I'm still confused here. I understand that the answer to your question should be the identity, however I don't quite understand how this works.
– John Lennon Mar 05 '13 at 22:09