We factor $20413=137\cdot 149.$ Compute $19^{33}\bmod {137}$ and $19^{33}\bmod{149}$ then use Chinese Remainder Theorem to find $19^{33}\bmod{137\cdot 149}.$
We can find $19^{33}\bmod {137}$ by the method of repeated squaring.$$\begin{align}19^2&=361&\equiv -50\pmod{137}\\
19^4&\equiv (-50)^2 = 2500 &\equiv 34\pmod{137}\\
19^8&\equiv 34^2 = 1156 &\equiv 60\pmod{137}\\
19^{16}&\equiv 60^2=3600 &\equiv 38\pmod{137}\\
19^{32}&\equiv 38^2=1444&\equiv 74\pmod{137}\\
19^{33}&=19\cdot 19^{32}\equiv 19\cdot 74=1406&\equiv 36\pmod{137}
\end{align}$$
Similarly, you can compute $19^{33}\bmod 149=80.$ Then solve the equation:
$$\begin{align}x&\equiv 36\pmod{137}\\x&\equiv 80\pmod{149}\end{align}$$
using Chinese Remainder Theorem, and this will give you $x\equiv 6338\pmod{137\cdot 149}.$
Assuming you could not reasonably factor the modulus, $M=20413,$ you could have just done one case of repeated squaring, modulo $M.$ The squaring will be harder, but you'll only have to do it once, and you do not have to do Chinese Remainder Theorem, nor factor $M.$