Does there exist a matrix $A \in \Bbb R^{2 \times 2}$ such that the following holds?
$$e^A = \begin{pmatrix}-4 && 0 \\ 0 && -1\end{pmatrix}$$
I know that for a Jordan block
$$J=\begin{pmatrix} \lambda&1&0&0&\dots\\ 0&\lambda&1&0&\dots\\ 0&0&\lambda&1&\dots\\ 0&0&0&\lambda&\dots\\ &&\vdots&&\ddots \end{pmatrix}$$
$$e^{Jt}=\begin{pmatrix} 1&\frac{t}{1!}&\frac{t^2}{2!}&\frac{t^3}{3!}&\dots\\ 0&1&\frac{t}{1!}&\frac{t^2}{2!}&\dots\\ 0&0&1&\frac{t}{1!}&\dots\\ 0&0&0&1&\dots\\ \vdots&\vdots&\vdots&\vdots&\ddots \end{pmatrix}$$
And using the Jordan normal form of a matrix $M:$ $M=TJT^{-1}$ it holds:
$$e^{Mt}=Te^{Jt}T^{-1}$$
I think that such a matrix $A$ does not exist because the eigenvalues are negative and $\ln (-4)$, $\ln(-1)$ is undefined but I don't know how properly prove that such a matrix doesn't exist.