1

I assumed $\sin^{-1}(x)=A$, $\sin^{-1}(y)=B$ and $\sin^{-1}(z)=C$.

Then it went the following way

$ A + B + C = \pi$

$A + B = \pi - C$

$\sin(A+B)= \sin(\pi-C)$

$\sin A \cos B + \cos A \sin B = sin C$

$x\sqrt{1-y^2}+y\sqrt{1-x^2} = \sin(\sin^{-1}(z))$

Am i right in doing so or heading wrong?

Alex Pozo
  • 1,290
  • Wlcome to Math StackExchange. Please use MathJax to make your formulas clearer.

    Also, the formula you've given is not true, thus it cannot be proven. Please check if it's correctly written.

    – Adam Latosiński Apr 30 '19 at 07:04
  • 1
    https://math.stackexchange.com/questions/154505/prove-that-sin2a-sin2b-sin2c-4-sina-sinb-sinc-when-a-b-c-are – lab bhattacharjee Apr 30 '19 at 10:12

0 Answers0