Observe that application $x\rightarrow ax+\frac bx$ isn't injective. Observe that
$$
\min_{x>0}\left(ax+\frac bx\right)=\sqrt{4ab}
$$
and becomes injective in $I_1=\left(0, \sqrt{\frac ba}\right)$ and in $I_2=\left(\sqrt{\frac ba}, +\infty\right)$.
Now let
$$
ax+\frac bx=\sqrt{t^2+4ab}\Leftrightarrow ax^2-x\sqrt{t^2+4ab}+b=0
$$
so
$$
x_1=\frac{\sqrt{t^2+4ab}-t}{2a}\\
x_2=\frac{\sqrt{t^2+4ab}+t}{2a}
$$
observe that $x_1\in I_1$ and $x_2\in I_2$ for every $t\in(0, +\infty)$ and these maps are biijective because their derivative doesn't change sign and
$$
\begin{align*}
\lim_{t\to +\infty}\frac{\sqrt{t^2+4ab}-t}{2a}&=\lim_{t\to +\infty}\frac{4ab}{2a\left(\sqrt{t^2+4ab}+t\right)}=0\\
\lim_{t\to +\infty}\frac{\sqrt{t^2+4ab}+t}{2a}&=+\infty
\end{align*}
$$
We have
$$
\int^{+\infty}_0f\left(ax+\frac bx\right)dx=\int^{\sqrt{\frac ba}}_0f\left(ax+\frac bx\right)dx+\int^{+\infty}_{\sqrt{\frac ba}}f\left(ax+\frac bx\right)dx\\
=\int^0_{+\infty}f\left(\sqrt{t^2+4ab}\right)\frac{t-\sqrt{t^2+4ab}}{2a\sqrt{t^2+4ab}}dx+\int^{+\infty}_{0}f\left(\sqrt{t^2+4ab}\right)\frac{t+\sqrt{t^2+4ab}}{2a\sqrt{t^2+4ab}}dx\\
=-\int^{+\infty}_0f\left(\sqrt{t^2+4ab}\right)\frac{t-\sqrt{t^2+4ab}}{2a\sqrt{t^2+4ab}}dx+\int^{+\infty}_{0}f\left(\sqrt{t^2+4ab}\right)\frac{t+\sqrt{t^2+4ab}}{2a\sqrt{t^2+4ab}}dx\\
=\frac 1a\int^{+\infty}_0f\left(\sqrt{t^2+4ab}\right)dx
$$