To obtain loup blanc's result
$$\eqalign{
\Sigma &= I + \rho\,({\tt\large 11}^T-I) \\
d\Sigma &= ({\tt\large 11}^T-I)\,d\rho \\
\beta &= \det(\Sigma) \\
d\beta &= \beta\,\Sigma^{-1} \\
\lambda &= \log(\beta) \\
d\lambda &= \frac{d\beta}{\beta} \\
&= \Sigma^{-1}:d\Sigma \\
&= \Sigma^{-1}:({\tt\large 11}^T-I)\,d\rho \\
\frac{d\lambda}{d\rho} &= \Sigma^{-1}:({\tt\large 11}^T-I) \\
}$$
where a colon is used as a convenient product notation for the trace, i.e.
$$\eqalign{A:B = {\rm tr}(A^TB)}$$
and Jacobi's formula is used to differentiate $\beta$.