2

Finding $$\lim_{n\rightarrow \infty}\sum^{n}_{k=0}\frac{\binom{n}{k}}{n^k(k+3)}$$

Try: $$\sum^{n}_{k=0}\frac{\binom{n}{k}}{n^k(k+3)}=\frac{n^3}{(n+1)(n+2)(n+3)}\sum^{n}_{k=0}(k+1)(k+2)\frac{\binom{n+3}{k+3}}{n^{k+3}}$$

Could some help me to solve it , thanks

DXT
  • 11,241

0 Answers0