To prove $f(A\cap B)=f(A)\cap f(B) \Longleftrightarrow \text{f is injective}$
Beginning:
$f(A\cap B)=\{f(x): x\in (A\cap B)\}=\{f(x): x\in A ∧ x\in B\}$ Is that correct and how can I proceed?
To prove $f(A\cap B)=f(A)\cap f(B) \Longleftrightarrow \text{f is injective}$
Beginning:
$f(A\cap B)=\{f(x): x\in (A\cap B)\}=\{f(x): x\in A ∧ x\in B\}$ Is that correct and how can I proceed?