I'm looking for a method to evaluate the following integral:
$\displaystyle \int_0^{\infty} \left( \frac{1}{e^x - 1} - \frac{1}{x} + \frac{e^{-x}}{2} \right) \frac{1}{x} dx$
EDIT:
Using the link, here's what I've done so far. Define
$F(s) = \displaystyle \int_0^{\infty} e^{-sx} \left (\frac{1}{e^x - 1} - \frac{1}{x} + \frac{e^{-x}}{2} \right) \frac{1}{x} dx$.
Supposing we've shown that this integral converges nicely enough to justify differentiating underneath it, we have that
$F'(s) = \displaystyle -\int_0^{\infty} e^{-sx} \left(\frac{1}{e^x - 1} - \frac{1}{x} + \frac{e^{-x}}{2} \right) dx = - \left( \int_0^{\infty}e^{-sx} \frac{e^{-x}}{2} dx + \int_0^{\infty} e^{-sx} \left( -\frac{1}{x} + \frac{1}{e^x - 1} \right) dx \right)$.
We recognize that the first integral is the Laplace transform of $\frac{e^{-x}}{2}$ and so the integral evaluates to $\frac{1}{2(s+1)}$.
Setting $F_2(s) \displaystyle \int_0^{\infty} e^{-sx} \left(-\frac{1}{x} + \frac{1}{e^{x} - 1} \right) dx$, (and assuming a similar analysis will justify the differentiation), we find that
$F'_2(s) = \displaystyle \int_0^{\infty} e^{-sx} - \frac{x e^{-sx}}{e^x - 1} dx = \frac{1}{s} - \int_0^{\infty} \frac{xe^{-sx}}{e^x - 1} dx $.
While I'm pretty sure I can justify the convergence of all the relevant integrals to differentiate, this last integral is not the Laplace transform of a function I'm familiar with (which doesn't mean much, because I'm not familiar with many). Any tips on how to take care of the last integral?