The Bernoulli polynomials $B_k(x)$ for $k\ge0$ are defined by the exponential generating function
\begin{equation*}
\frac{z\textrm{e}^{xz}}{\textrm{e}^z-1}=\sum_{k=0}^\infty B_k(x)\frac{z^k}{k!}, \quad |z|<2\pi
\end{equation*}
for $x\in\mathbb{R}$. By the Euler formula
$$
\textrm{e}^{\textrm{i}x}=\cos x+\textrm{i}\sin x,
$$
we find the relation
$$
\sin x=\frac{\textrm{e}^{\textrm{i}x}-\textrm{e}^{-\textrm{i}x}}{2\textrm{i}}.
$$
Then
\begin{align*}
\frac{x}{\sin x}&=\frac{2\textrm{i}x} {\textrm{e}^{\textrm{i}x}-\textrm{e}^{-\textrm{i}x}}\\
&=\frac{(2\textrm{i}x)\textrm{e}^{(2\textrm{i}x)/2}} {\textrm{e}^{(2\textrm{i}x)}-1}\\
&=\sum_{k=0}^\infty B_k\biggl(\frac12\biggr)\frac{(2\textrm{i}x)^k}{k!}\\
&=\sum_{k=0}^\infty (2\textrm{i})^kB_k\biggl(\frac12\biggr)\frac{x^k}{k!}\\
&=\sum_{k=0}^\infty (2\textrm{i})^{2k}B_{2k}\biggl(\frac12\biggr)\frac{x^{2k}}{(2k)!}\\
&=\sum_{k=0}^\infty (-1)^k2^{2k}B_{2k}\biggl(\frac12\biggr)\frac{x^{2k}}{(2k)!}\\
&=\sum_{k=0}^\infty (-1)^{k+1}2^{2k}\biggl(1-\frac1{2^{2k-1}}\biggr)B_{2k}\frac{x^{2k}}{(2k)!}\\
&=2\sum_{k=0}^\infty (-1)^{k+1}\bigl(2^{2k-1}-1\bigr)B_{2k}\frac{x^{2k}}{(2k)!}
\end{align*}
for $|x|<\pi$, where $B_k(0)=B_k$ and
\begin{align*}
B_0&=1, & B_2&=\frac{1}{6},& B_4&=-\frac{1}{30},& B_6&=\frac{1}{42},& B_8&=-\frac{1}{30},\\
B_{10}&=\frac{5}{66},& B_{12}&=-\frac{691}{2730},& B_{14}&=\frac{7}{6},& B_{16}&=-\frac{3617}{510}, & B_{18}&=\frac{43867}{798}.
\end{align*}