The notation $A^B$ does not have a generally recognized definition that applies when $A=-1$ and $B=1/2$.
There are some fairly popular candidate definitions, though.
One is to consider that $A^B$ can be a "multi-valued expression" whose value can be every complex number that can be written as $\exp(Bz)$ where $z$ is a complex number that satisfies $\exp(z)=A$. According to this definition, the possible values of $(-1)^{1/2}$ are exactly $i$ and $-i$. Your $\exp(\frac{3\pi i}{2})$ happens to be one of these: it is equal to $-i$.
The trouble with this is that "multi-valued expression" is a confusing and sometimes ill-defined concept, and in particular the meaning of an equality between multi-valued expressions becomes very context-dependent ("it means whatever you need it to mean for what you're doing to make sense" is not really a good basis for rigorous reasoning). Depending on how you interpret the $=$, you could get $(-1)^{1/2}=i$ to be true or false or some kind of either/or. Not particularly enlightening.
A more careful and sophisticated way to handle the idea of "multi-valued" is Riemann surfaces. They are useful for giving a sensible meaning to ambiguous expressions that depend smoothly on some parameter -- but on the other hand doing it carefully means that simply writing down an expression such as $(-1)^{1/2}$ does not in itself point to a value. So it is not an answer to the immediate question.
A different definition would be to speak of the principal value of $A^B$, defined as $\exp(Bz)$ where $z$ is the particular solution of $\exp(z)=A$ whose imaginary part falls in the half-open interval $(-\pi,\pi]$. Then $(-1)^{1/2}=i$ becomes plain truth.
The trouble now is that the "principal part" operation lacks many of the nice properties we otherwise expect arithmetic operations to have. It is not continuous, for example. And the choice of $(-\pi,\pi]$ is pretty arbitrary. The definition at least gives the warm fuzzy feeling of having a definite answer to what the value of the expression is, but there's not much mathematical utility in having that answer.
And simply refusing to define a value for this expression seems to be at least as common as any of the above alternatives.