This is a second answer
because I am
turning the problem completely around.
I will show that
there is a sequence
$a_n$
such that
$\lim_{n\to \infty} \big|a_n - \frac{1}{n}\sum_{i=1}^n a_i \big|= 0
$,
$a_n$ is bounded,
and $a_n$ does not converge.
$\lim_{n\to \infty} \big|a_n - \frac{1}{n}\sum_{i=1}^n a_i \big|= 0
$
means that
$a_n
=\frac{1}{n}\sum_{i=1}^n a_i +f(n)
$
where
$f(n) \to 0$
as
$n \to \infty$.
Then
$na_n
=\sum_{i=1}^n a_i +nf(n)
$
or
$(n-1)a_n
=\sum_{i=1}^{n-1} a_i +nf(n)
$.
Applying the usual trick
when $\sum_{i=1}^n a_i $
appears in a recurrence,
$na_{n+1}
=\sum_{i=1}^{n} a_i +(n+1)f(n+1)
$.
Subtracting,
$\begin{array}\\
na_{n+1}-(n-1)a_n
&=\sum_{i=1}^{n} a_i +(n+1)f(n+1)
-(\sum_{i=1}^{n-1} a_i +nf(n))\\
&=a_n +(n+1)f(n+1) -nf(n)\\
\end{array}
$
so
$\begin{array}\\
na_{n+1}
&=na_n +(n+1)f(n+1) -nf(n)\\
\text{or}\\
a_{n+1}
&=a_n +(1+1/n)f(n+1) -f(n)\\
\end{array}
$
Therefore
$a_{n+1}-a_n
=(1+1/n)f(n+1) -f(n)
=f(n+1) -f(n)+\frac{f(n+1)}{n}
$.
Summing,
$\begin{array}\\
a_n-a_1
&=\sum_{k=1}^{n-1} (a_{k+1}-a_k)\\
&=\sum_{k=1}^{n-1} (f(k+1) -f(k)+\dfrac{f(k+1)}{k})\\
&=f(n)-f(1)+\sum_{k=2}^{n} \dfrac{f(k)}{k-1}\\
\end{array}
$
Now,
by choosing a
$f(k) \to 0$,
we can get a desired $a_n$.
However,
if we want
$a_n \to \infty$,
we must also have
$\sum_{k=2}^{n} \dfrac{f(k)}{k-1}
\to \infty$.
$f(k) = \frac1{k}$
will not work
because the sum converges.
$f(k) = \frac1{\ln(k)}$
works
because
$\sum_{k=2}^n \dfrac{1}{\ln(k)(k-1)}
\approx \sum_{k=2}^n \dfrac{1}{k\ln(k)}
\approx \int_{k=2}^n \dfrac{dx}{x\ln(x)}
= \ln(\ln(n))
$.
If we want an $a_n$
that doesn't converge
and stays bounded,
we must find a $f(k)$
such that
$\sum_{k=2}^{n} \dfrac{f(k)}{k-1}
$
behaves like that.
Since
$\sum_{k=2}^n \dfrac{1}{\ln(k)(k-1)}
\approx \ln(\ln(n))
$,
for any $n_0$
there is a $n(n_0)$
such that
$\sum_{k=n_0}^{n(n_0)} \dfrac{1}{\ln(k)(k-1)}
\gt 1
$.
An approximate value is
$n(n_0) \approx n_0^e$.
Therefore,
if we choose $f(k)$
to have constant sign
in each interval
$n_0 \le k \lt n(n_0)$,
with the signs alternating
in consecutive intervals,
as $n$ increases
$\sum_{k=2}^{n} \dfrac{(-1)^{g(k)}}{\ln(k)(k-1)}$
for the appropriate $g(k)$
will increase by 1,
then decrease by 1,
and so on,
and will thus not converge
and be bounded.