In other discussions, e.g. here it is claimed that a polynomial in a field $K$ with degree greater than $1$, having a root in $K$, must be reducible. So by this criterion $X^3-1$ would be reducible over $\mathbb{Q}$ since it has a root $1 \in \mathbb{Q}$.
However other sources, e.g. here say that a polynomial in $\mathbb{Q}[X]$ is reducible only if it can be factored into two non-constant polynomials also in $\mathbb{Q}[X]$. So by this criterion it looks as though $X^3-1$ is actually irreducible, because although one factor is $(X-1)$, the other factors are $(X-e^{2\pi i/3})$ and $(X-e^{4\pi i/3})$ which are clearly not in $\mathbb{Q}$.
Is either of these definitions of irreducibility either wrong or non-standard, or are they in fact equivalent? If the latter, what have I overlooked?