0

Is it possible to swap sum and integration signs in this integral $$\int\limits_{0}^{+\infty}\sum\limits_{n=1}^{+\infty}a^nx^{1/2}e^{-nx}dx=\sum\limits_{n=1}^{+\infty}a^n\int\limits_{0}^{+\infty}x^{1/2}e^{-nx}dx$$ provided that $a∈(0;1]$? If it is possible, how to prove the uniform convergence of the series?

Bernard
  • 175,478

0 Answers0