I am trying to calculate the Galois group of the polynomial $f=X^4-2X^2+2$. $f$ is Eisenstein with $p=2$, so irreducible over $\mathbf{Q}$. I calculated the zeros to be $\alpha_1=\sqrt{1+i},\alpha_2=\sqrt{1-i},\alpha_3=-\alpha_1$ and $\alpha_4=-\alpha_2$. Let $\Omega_f=\mathbf{Q}(\alpha_1,\alpha_2,\alpha_3,\alpha_4)=\mathbf{Q}(\alpha_1,\alpha_2)$ be a splitting field of $f$ over $\mathbf{Q}$. Since $\alpha_1\alpha_2=\sqrt{1+i}\sqrt{1-i}=\sqrt{2}$, we have $\Omega_f=\mathbf{Q}(\sqrt{1+i},\sqrt{2})$.
So if we can prove that $[\Omega_f:\mathbf{Q}]=8$, then we have $\#\operatorname{Gal} (f)=8$ and for $\operatorname{Gal}(f)\subset S_4$, we must have that it is isomorphic to the dihedral group $D_4$.
How do I go about proving $[\mathbf{Q}(\sqrt{1+i},\sqrt{2})]=8$?