I'm not not schooled in math. I'm 50 years old and I only have about a grade 8 level. But I do enjoy math and heard a question in the show "Growing Pains of a Teenage Genius" that interested me. So please forgive me. I do not speak "math."
The question has been posted here already, but I don't think the correct answer was given, and since I'm new, I haven't earned the points to be able to comment on that post. So I've started my own post.
The question is, if you have 1000 pennies lined up in a row, all heads up, and you turn over every second penny, then every third penny, then every fourth penny, etc. all the way until you turn over the thousandth and last penny, which ones will be heads up?
I've figured out that the answer is that the square numbers will be heads up. It is only the square numbers that will be flipped an even number of times to land them in the position they started out in. But I don't know why that is.
What is it about square numbers that they are the only ones that get flipped an even number of times through the process of flipping every 2nd, 3rd, 4th,...etc, penny?
I thought it must have something to do with factoring since the primes will only get flipped once, but the widening gap between each succession of flips is a bit complicated to visualize, and I don't know how to work that with factoring square numbers.
Is there something special about factoring square numbers that's applicable here?
How do you visualize this problem mathematically?