The Bezout equation $\gcd(7,11)=\underbrace{\color{#f84}{\bf 1} =\color{#0a0}{11\cdot 2} - \color{#c00}{7\cdot 3}}\,$ yields exponent $\color{#f84}{\bf 1}$ on $\,x\,$ as follows
$$\qquad\qquad\qquad\qquad\ \ x^{\Large\color{#f84}{\bf 1}}\equiv\, \dfrac{(x^{\Large \color{#0a0}{11}})^{\Large \color{#0a0}2}}{(x^{\Large \color{#c00}{7}})^{\Large \color{#c00}3}}\equiv \dfrac{389^{\large 2}}{368^{\large 3}}\equiv \dfrac{-83}{103}\equiv 15\!\pmod{\!407} $$
i.e. $\ x\equiv -83\cdot 103^{-1}.\,$ The inverse can be computed by the Extended Euclidean algorithm.
Notice that our inferences are unidirectional, i.e. any solution of the system must satisfy the above. They do not imply that $\,x\equiv 15\,$ is a solution, so you need to check (or prove) that it is.