Proposition: Let $X$ be a compact Hausdorff space. Suppose there are countable real valued continuous functions $\{f_n\}_{n \in \mathbb{Z}_+}$ separating $X$ i.e. for all $x, y \in X$ with $x \neq y$, $\exists k:=k(x,y) \in \mathbb{Z}_+$, $f_k(x)\neq f_k(y)$. Let $$ d(x,y):=\sum_{n=1}^\infty \frac{\min\{|f_n(x)-f_n(y)|, 1\}}{2^n} $$ Then $X$ is metrizable by $d$.
I want to prove that, for all open set $U$ and $x \in U$, there exists $B(x;r)$ s.t. $B(x;r)\subset U$ and for all $B(x;r)$, there exists an open set $U$ s.t. $U\subset B(x;r)$. Here, $B(x;r):=\{y\in X| d(x,y)<r\}$. I know $B(x;r)\supset \bigcap_{n \in \mathbb{Z}_+} \{y \in X |f_n(x)-f_n(y)|<r\}$, but right term is not open.
How to prove this proposition?