The standard test ($\in \mathcal{C}_{\text{c}}^{\infty}(\mathbb{R})$) function is the following \begin{equation*} f_{a,b}^{(c)}: \mathbb{R} \to \mathbb{R}_{\ge 0}, \ x \mapsto \begin{cases} \exp\left(\frac{C}{(x - a)(x - b)}\right), & \text{if } a < x < b, \\ 0, & \text{elsewhere.} \end{cases} \end{equation*} Where $C := \frac{c(a - b)^2}{4}$. Then, $f \in \mathcal{C}_{\text{c}}^{\infty}(\mathbb{R})$, supp$(f) \subset [a,b]$ and $\max\limits_{x \in \mathbb{R}} f(x) = e^{-c}$.
Are there fundamentally different test functions and if not, why?
I want "fundamentally different" to mean that you can't express it in the form exp of the reciprocal of a polynomial (mutiplied by a constant) for an interval $[a,b]$ and zero elsewhere.
Edit: (response to @md2perpe's comment about convoluting with an indicator function) We can construct a function which is very similar to the one you described by using the function from above (Note: this is not the exact function, but we had to this for a homework way back so I decided to post it here, it can surely be modified to be exactly your example).
For $x \in \mathbb{R}$ and $\alpha \in (0, \infty)$ define $$ h_{\alpha, x}: \mathbb{R} \to [0,1], t \mapsto \begin{cases} 1, & \text{if } t \in [x - \frac{\alpha}{2}, x + \frac{\alpha}{2}], \\ \exp\left(1 -\frac{1}{1-\left(\frac{2}{\alpha}(t + \frac{\alpha}{2} - x )\right)^2 } \right), & \text{if } t \in [x - \alpha, x - \frac{\alpha}{2}), \\ \exp\left(1 -\frac{1}{1-\left(\frac{2}{\alpha}(t - \frac{\alpha}{2} - x )\right)^2 } \right), & \text{if } t \in (x + \frac{\alpha}{2}, x + \alpha], \\ 0, & \text{else.} \end{cases} $$
Then, we have $$ h_{\alpha, x}(t) = \begin{cases} 1, & t \in [x - \frac{\alpha}{2}, x + \frac{\alpha}{2}] \\ 0, & t \in \mathbb{R} \setminus [x - \alpha, x + \alpha]. \end{cases}, $$ which is fundamentally different from the function above.