We start by finding a solution to $35x+13y=1$
\begin{array}{r|r|rr|rl}
& 35 & 1 & 0 & \color{red}{35} & \color{red}{= 1(35) + 0(13)}\\
-3 & 13 & 0 & 1 & \color{red}{13} & \color{red}{ = 0(35) + 1(13)}\\
3 & -4 & 1 & -3 & \color{red}{-4} & \color{red}{ = 1(35) - 3(13)}\\
& 1 & 3 & -8 & \color{red}{ 1} & \color{red}{ = 3(35) - 8(13)}\\
\end{array}
We conclude that $$35(3)+13(-8)=1.$$
Hence a solution to $35x+13y=2000$ is
$$35(6000)+13(-16000)=2000.$$
We can therefore characterize all integer solutions to $35x + 13y = 2000$ by
$$(x,y) = (6000 - 13t, 35t - 16000).$$
To find the smallest positive integer value of $x$, we solve
\begin{align}
6000 - 13t &> 0 \\
-13t &> -6000 \\
t & < 461\frac{7}{13} \\
t &\le 461
\end{align}
So, the smallest positive integer value of $x$ is $x = 6000-13(461) = 7$
The corresponding value of $y$ is $y = 35(461) - 2400 = 13735$
We can now recharacterize all integer solutions to $35x + 13y = 2000$ by
$$(x,y) = (7 + 13t, 13735 - 35t).$$
Where $t=0$ gives $(x,y)=(7, 13735)$, the positive solution with the smallest possible value of $x$.
To find the smallest possible value of $y$, we solve
\begin{align}
13735 - 35t &> 0 \\
-35t &> -13735 \\
t &< 392\frac 37 \\
t &\le 392
\end{align}
So the smallest possible value of $y$ occurs when $t=392$, that is
$y = 13735 - 35(392) = 15$
So the set of all positive solutions can be expressed as
$$\{(7 + 13t, 13735 - 35t) : t = 0,1,2, \dots, 392 \}$$