$\sin 0 = 0$ and $\sin$ is continuous.
So for every $\epsilon > 0$ there is a $\delta> 0$ so the if $|x-0| < \delta$ then $|\sin x - \sin 0| = |\sin x - 0| < \epsilon$.
And we are told $\lim_{x\to 0}f(x) = A$ which means for every $\epsilon > 0$ the is a $\delta > 0$ so that if $|x -0| < \delta$ then $|f(x) - A| < \epsilon$.
So for any $\epsilon > 0$ let $\gamma=\delta_1$ be the number so that $|x - 0|< \delta_1 \implies |f(x) - A| < \epsilon$.
Then let $\epsilon_2 = \gamma = \delta_1$ and let $\delta> $ be the number so that if $|x - 0| < \delta \implies |\sin x - 0| < \epsilon_2 = \gamma = \delta_1$.
So if $|x-0| < \delta$ then $|\sin x - 0| < \epsilon_2 =\delta_1 $ and $|f(\sin x) - A| < \epsilon$.
So $|x-0| < \delta \implies |f(\sin x) - A| < \epsilon$.
So $\lim_{x\to 0}f(\sin x) = A$.