As the title suggests we need to find: $$\lim_{n\to \infty}{\frac{\sin{1}+\sin{2}+...+\sin{n}}{n}}$$ What I did:
$$\sum_{k=1}^{n}{\sin{k}}=\operatorname{Im}\big(\sum_{k=0}^{n}{e^{ik}}\big)=\operatorname{Im}\big(\frac{1-e^{i(n+1)}}{1-e^i}\big)=\operatorname{Im}\big(\frac{-2i\sin\big(\frac{n+1}{2}\big)}{-2i\sin{\frac{1}{2}}}e^{i\frac{n}{2}}\big)$$ $$=\frac{\sin\left(\frac{n+1}{2}\right)\sin\left(\frac{n}{2}\right)}{\sin{\frac{1}{2}}}$$.
$$\left|\frac{1}{n}\sum_{k=1}^{n}{\sin{k}}\right|=\frac{1}{n}\left|{\frac{\sin\left(\frac{n+1}{2}\right)\sin\left(\frac{n}{2}\right)}{\sin{\frac{1}{2}}}}\right|\le \frac{1}{n\left|\sin{\frac{1}{2}}\right|}\longrightarrow_{\infty} 0$$
By the way I don’t like this method using lots of tools such as complex numbers, geometric series... Did someone has another way to solve, specially using integral estimate.
$\textbf{Edit}$ I have found an integral estimate.
By Abel’s Lemma :
$$\sum_{n\le x}{\sin{n}}=\lfloor{x}\rfloor\sin{x}-\int_{1}^{x}{\lfloor{t}\rfloor\cos{t}dt}$$ $$=x\sin{x}-\{x\}\sin{x}-\int_{1}^{x}{\big(t\cos{t}-\{t\}\cos{t}\big)dt}$$ $$=x\sin{x}-\{x\}\sin{x}-\int_{1}^{x}{t\cos{t}dt}+\int_{1}^{x}{\{t\}\cos{t}dt}$$ $$= x\sin{x}-\{x\}\sin{x}-\big\{x\sin{x}-\sin{1}-\sin{x}+\sin 1\big\} +\int_{1}^{x}{\{t\}\cos{t}dt}$$ $$=\underbrace{\big(1-\{x\}\big)\sin{x}+\int_{1}^{x}{\{t\}\cos tdt}}_{\text{all this is O(1)}}$$
For $x=m$ we will have: $$\sum_{n=1}^{m}{\sin{n}}=\sin{m}+\int_{1}^{m}{\{t\}\cos{t}dt}=O(1)$$
$$\therefore \frac{1}{m}\sum_{n=1}^{m}{\sin{n}}=O\left(\frac{1}{m}\right)$$ $\textbf{rEdit:}$
We can deduce from above: $$\sum_{k=1}^{n}{\sin{k}}=\int_{1}^{n+1}{\{t\}\cos{t}}dt \tag{•}$$
Is $(•)$ a known relation?