Consider $f_n \to f$ a.e., $f_n \ge 0$, $f_n \in L^2(d\mu), f \in L^2(d\mu)$ and $\int |f_n|^2 \, d\mu \mathop{\longrightarrow}\limits_{n \to \infty} \int |f|^2 \, d\mu$.
Find an elementary argument to show that $f_n \to f$ in $L^2(d\mu)$.
We need to show that:
\begin{align*} \lim\limits_{n \to \infty} \lVert f_n - f \rVert_2 &= 0 \\ \lim\limits_{n \to \infty} \left(\lVert f_n - f \rVert_2\right)^2 &= 0 \\ \end{align*}
Starting with:
\begin{align*} \lim\limits_{n \to \infty} \left(\lVert f_n - f \rVert_2\right)^2 &= \lim\limits_{n \to \infty} \int (f_n - f)^2 \, d\mu \\ &= \lim\limits_{n \to \infty} \int (f_n^2 + f^2 - 2 f f_n) \, d\mu \\ &= \lim\limits_{n \to \infty} \int f_n^2 + \int f^2 - 2 \lim\limits_{n \to \infty} \int f f_n \, d\mu \\ \end{align*}
Since $f_n \to f$ in $L^2(d\mu)$, we can simplify:
\begin{align*} &= 2 \int f^2 - 2 \lim\limits_{n \to \infty} \int f f_n \, d\mu \\ \end{align*}
If $f_n \nearrow f$ we could use the monotone convergence theorem to conclude this proof. But we don't have that. I'm not sure how to conclude this.