Let $\left(\alpha_n \right)_{n\in \mathbb{N}}$ a succesion in $BV[a,b]$ and $f:[a,b] \rightarrow \mathbb{R}$ such that $f \in R_{\alpha_n} [a,b]$. If $\alpha \in BV[a,b]$ and $V_a^b(\alpha_n - \alpha) \rightarrow 0$ when $n \rightarrow \infty$, show that $f \in R_\alpha[a,b]$ and $$\lim_{n\rightarrow \infty}\int_a^b f d\alpha_n = \int_a^b f d\alpha $$
What I tried is :
$$\left|S(\alpha_n, P, T)- S(\alpha, P, T)\right| < \epsilon$$ for any $\epsilon$
But I think i need to prove, that $\lim_{n\rightarrow \infty}\int_a^b f d\alpha_n$ exist and then $S(\alpha, P, T)$ converge to the integral. Or something like that. Is this righ? How to show the existence of the integral? Is there other way to attack this problem?