Let $A$ be a $n \times n$ non-singular matrix having distinct eigenvalues. If $B$ is a matrix satisfying $A B = B A^{-1}$, show that $B^2$ is diagonalisable.
Answer:
Let $\lambda_i, \ i=1,2,3, \cdots, n$ be the $n$ distinct eigenvalues.
Now, $AB=BA^{-1} \Rightarrow B=ABA $
But then how to proceed?