Instead of computing a single moment, it will be simpler to compute all moments
through the MGF (moment generating function).
Let $X = X_{(n)}$. For any $t \in (-1,0)$, we have
$$\begin{align}
\verb/MGF/[X] \stackrel{def}{=} \verb/E/[e^{tX}]
&= \int_0^\infty e^{tx} d (1-e^{-x})^n\\
\color{blue}{\text{ int. by part } \rightarrow}
&= -t\int_0^\infty (1-e^{-x})^n e^{tx} dx
= t\sum_{k=0}^n (-1)^{k-1}\binom{n}{k}\int_0^\infty e^{-(k-t)x}dx\\
&= \sum_{k=0}^n (-1)^{k-1} \binom{n}{k}\frac{t}{k-t}\\
&= 1 + \sum_{k=1}^n (-1)^{k-1} \binom{n}{k}\sum_{\ell=1}^\infty \frac{t^\ell}{k^\ell}\\
&= 1 + \sum_{\ell=1}^\infty t^\ell \sum_{k=1}^n \frac{(-1)^{k-1}}{k^\ell}\binom{n}{k}
\end{align}
$$
On the other hand,
$$E[e^{tX}] = E\left[1 + \sum_{\ell=1}^\infty \frac{t^\ell}{\ell!}X^\ell\right]
= 1 + \sum_{\ell=1}^\infty \frac{t^\ell}{\ell!} E[X^\ell]$$
By comparing coefficients of $t^\ell$ for $\ell \ge 1$, the $\ell^{th}$ moments of $X$ follows:
$$E[X^\ell] = \ell! \sum_{k=1}^n \frac{(-1)^{k-1}}{k^\ell}\binom{n}{k}$$
Update
Amazed by heropup's elegant expression for the variance, I look at the problem again. It turns out there is another generating function
which significantly simplify the task.
The CGF (cumulant-generating function) is the natural logarithm of MGF:
$$\verb/CGF/(t) \stackrel{def}{=} \log \verb/MGF/(t) = \log \verb/E/[e^{tX}]$$
In terms of CFG, the mean and variance are given by the formula:
$$\verb/E/[X] = \verb/CGF/'(0)\quad\text{ and }\quad \verb/Var/[X] = \verb/CGF/''(0)$$
Changing variable from $x$ to $u = e^{-x}$ in above integral of MGF and keeping $t \in (-1,0)$, we have
$$\begin{align}
e^{\verb/CGF/(t)} & = -t \int_0^1 (1-u)^n u^{-t-1} du\\
&= -t \frac{\Gamma(n+1)\Gamma(-t)}{\Gamma( n+1-t)} = (-t)\frac{n!}{(-t)(-t+1)\cdots(-t + n)}\\
&= \prod_{k=1}^n\frac{k}{k-t}\end{align}$$
This leads to
$$\begin{align}
\verb/CGF/(t) &= \sum_{k=1}^n - \log\left(1 - \frac{t}{k}\right)\\
\implies \verb/CGF/'(t) &= \sum_{k=1}^n \frac{1}{k-t}\\
\implies \verb/CGF/''(t) &= \sum_{k=1}^n \frac{1}{(k-t)^2}
\end{align}$$
From this, the mean and variance follow immediately...
$$\begin{align}
\verb/E/[X] &= \verb/CGF/'(0) = \sum_{k=1}^n \frac{1}{k}\\
\verb/Var/[X] &= \verb/CGF/''(0) = \sum_{k=1}^n \frac{1}{k^2}
\end{align}$$
$E(X_{n})=\int_0^\infty x n(1-e^{-x})^{n-1}e^{-x} dx\overset{t=e^{-x}}{=}\int_0^1 -\ln(t) n(1-t)^{n-1} dt$
– Masoud Apr 05 '19 at 00:43