$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
&\bbox[10px,#ffd]{\sum_{0\ \leq\ k}{n + k \choose 2k}{2k \choose k}{\pars{-1}^{k} \over k + 1}} =
\sum_{k\ =\ 0}^{\infty}{n + k \choose n - k}\bracks{{-1/2 \choose k}
\pars{-4}^{k}}\pars{-1}^{k}\int_{0}^{1}t^{k}\,\dd t
\\[5mm] = &\
\int_{0}^{1}\sum_{k\ =\ 0}^{\infty}{-1/2 \choose k}
\braces{\bracks{z^{n - k}}\pars{1 + z}^{n + k}}\pars{4t}^{k}\,\dd t
\\[5mm] = &\
\bracks{z^{n}}\pars{1 + z}^{n}
\int_{0}^{1}\sum_{k\ =\ 0}^{\infty}{-1/2 \choose k}
\bracks{4z\pars{1 + z}t}^{k}\,\dd t
\\[5mm] = &\
\bracks{z^{n}}\pars{1 + z}^{n}\
\underbrace{\int_{0}^{1}\bracks{1 + 4z\pars{1 + z}t}^{\, -1/2}\,\,\dd t}
_{\ds{1 \over 1 + z}}\ =\ \bracks{z^{n}}\pars{1 + z}^{n - 1} =
\bbx{\large \delta_{n0}}
\end{align}