The sum in question is:
$$\sum^\infty_{n=1}n\left(\frac{5}{6}\right)^{n-1}$$
It passes the ratio test:
\begin{align} &\lim_{n\rightarrow \infty}\frac{(n+1)\left(\frac{5}{6}\right)^{n}}{n\left(\frac{5}{6}\right)^{n-1}}\\ =\frac{5}{6}&\lim_{n\rightarrow \infty}\frac{(n+1)}{n}\frac{\left(\frac{5}{6}\right)^{n}}{\left(\frac{5}{6}\right)^{n}}\\ =\frac{5}{6}&\lim_{n\rightarrow \infty}(1+ \frac{1}{n})\\ =\frac{5}{6} &< 1\Rightarrow \text{convergent} \end{align} But now I do not know how to find the convergent value.