Background & Motivation
I'm trying to verify/disprove the conjectured formula of the weighted integral of $f(x)$: The Definite Integral Problem (with a twist)?
$$ \lim_{k \to \infty} \lim_{n \to \infty}\ \sum_{r=1}^n a_r \left( f(\frac{k}{n}r)\frac{k}{n} \right) = \lim_{s \to 1} \! \underbrace{\frac{1}{\zeta(s)} \sum_{r=1}^\infty \frac{a_r}{r^s}}_{\text{removable singularity}} \int_0^\infty f(x) \, dx $$
Where f(x) is a smooth continuous function whose integral from 0 to infinty is absolutely convergent and $\zeta(s)$ is the zeta function.
My idea is to choose $f(x) = e^{-x}$ and $g(x) = e^{-x^2}$. Notice: $$(\int_{0^+}^\infty g(x) dx)^2 = \lim_{k' \to \infty} \lim_{n' \to \infty}\ \sum_{i,j=1}^\infty e^{-(i^2 +j ^2) (\frac{k'}{n'})^2} (\frac{k'}{n'})^2$$
Compare $(\int_{0^+}^\infty g(x) dx)^2$ to the weighted integral of $f(x)$ and choose $k$ and $n$ such that $ k \to k'^2$ and $n \to n' ^2$ and also make $a_r$ such that both the series match.
$$(\int_{0^+}^\infty g(x) dx)^2 = \lim_{k' \to \infty} \lim_{n' \to \infty}\ \sum_{i,j=1}^\infty e^{-(i^2 +j ^2) (\frac{k'}{n'})^2} (\frac{k'}{n'})^2 $$ $$= \lim_{k \to \infty} \lim_{n \to \infty}\ \sum_{r=1}^n a_r \left( f(\frac{k}{n}r)\frac{k}{n} \right) = \lim_{s \to 1} \! \underbrace{\frac{1}{\zeta(s)} \sum_{r=1}^\infty \frac{a_r}{r^s}}_{\text{removable singularity}} \int_0^\infty f(x) \, dx $$
For example $a_1 = 0$, $a_2 = 1$, $a_3=0$, $a_4 = 0$, $a_5 =2$ and so on ... In general $$a'_r =\begin{cases} 0 & r\neq i^2 + j^2 \\ 1 & r = i^2 + j^2 , i = j\\ 2 & r = i^2 + j^2 , i \neq j \\ \end{cases}$$ where $i$ and $j$ are arbitrary positive integers $\neq 0$. and $a_r = \sum_{i\geq j} a'_{r(i,j)}$ For example $r=50$: $$a_{50} = a'_{50(5,5)} + a'_{50(7,1)} = 2+1 = 3$$
Questions
Can you tell the limit of:
$$\lim_{s \to 1} {\frac{1}{\zeta(s)} \sum_{r=1}^\infty \frac{a_r}{r^s}} = ?$$
where as mentioned previously
$$a'_r =\begin{cases} 0 & r\neq i^2 + j^2 \\ 1 & r = i^2 + j^2 , i = j\\ 2 & r = i^2 + j^2 , i \neq j \\ \end{cases}$$ where $i$ and $j$ are arbitrary positive integers $\neq 0$. Also if $a_{r(i,j)} = a_{r(i,j)}$ in t and $a_r = \sum_{i \geq j} a'_{r(i,j)}$ For example $r=50$: $$a_{50} = a'_{50(5,5)} + a'_{50(7,1)} = 2+1 = 3$$
Is there any flaw in the idea of the verification?