Given $E[0,1]$ be the set of all step functions on $[0,1]$ and $L[0,1]$ be the set of all piecewise linear continuous functions on $[0,1]$. Then
(a) $(E [0,1], d_{\infty})$ is separable?
(b) $(E [0,1], d_{1})$ is separable?
(c) $(L [0,1], d_{\infty})$ is separable?
First all, I am using the following definitions:
1) $(X,d)$ is called a separable metric space if it contains a countable, dense subset.
2) $d_\infty: X \times X\rightarrow \mathbb{R}$ given by $d_{\infty}(f,g) = \sup_{x \in [0,1]}|f(x)-g(x)|$.
3) $d_1 : X \times X\rightarrow \mathbb{R}$ given by $d_{1}(f,g) = \int_{0}^{1}|f(x)-g(x)|\;dx$.
4) $E[0,1]$ is the set of all functions $f:[0,1] \rightarrow \mathbb{R}$ such that there are $0 = x_0 < x_1 < \cdots < x_n < x_{n+1}=1$, $n \geq 0$, where $f$ is constant in all open subinterval $(x_i, x_{i+1}), i = 0, \ldots, n$.
5) $L[0,1]$ is the set of all continuous functions $f:[0,1] \rightarrow \mathbb{R}$ such that there are $0 = x_0 < x_1 < \cdots < x_n < x_{n+1}=1$, $n \geq 0$, where $f(x) = f(x_i)+ \dfrac{(f(x_{i+1}) - f(x_i))}{x_{i+1}-x_i}(x-x_i)$ if $x \in [x_i, x_{i+1}]$, $0 \leq i \leq n$.
edit Problem solved.