I'm trying to prove the commutativity of addition in Peano arithmetic in something like a natural deduction system, but am stuck halfway (I say "something like a natural deduction system" because I don't really know how to format one here; I'll do my best to represent it, however). I must have gone wrong somewhere, but I cannot see how.
I am using axioms written as follows (leaving out those for multiplication):
A1. $(\forall x) S(x) ≠ 0$
A2. $(\forall x)(\forall y) (S(x) = S(y) \rightarrow x = y)$
A3. $(\forall x) +(x, 0) = x$
A4. $(\forall x)(\forall y) +(x, S(y)) = S(+(x, y))$
A5. Axiom schema of induction: For any formula $\phi$ built from =, $S$, +, with one free variable: $[\phi (0) \space\And\space (\forall x)(\phi(x) \rightarrow \phi(S(x)))] \rightarrow (\forall x)\phi(x)$
It's been recommended that I use the induction schema twice, first to prove $(\forall x) +(0, x) = x$, and then to get $(\forall x)(\forall y)+(x, y) = +(y, x) $. This is what I've done so far:
- $ +(0, 0) = 0$ $\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space$(A3 instantiation)
- $+(0, a) = a$ $\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space$(assumption)
- $+(0, S(a)) = S(+(0, a))$ $\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space$ (A4 instantiation)
- $+(0, S(a)) = S(a)$ $\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space$(Leibniz's law, 2, 3)
- $ +(0, a) = a \rightarrow +(0, S(a)) = S(a)$ $\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space$ (conditional proof, 2-4)
- $(\forall x) (+(0, a) = a \rightarrow +(0, S(a)) = S(a))$ $\space\space\space\space\space\space\space\space\space\space\space\space$ (universal generalization, 5)
- $[ +(0, 0) = 0 \space\And\space (\forall x) (+(0, a) = a \rightarrow +(0, S(a)) = S(a))] \rightarrow (\forall x) +(0, x) = x$ $\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space$(A5 instantiation)
- $+(0, 0) = 0 \space\And\space (\forall x) (+(0, a) = a \rightarrow +(0, S(a)) = S(a))$ (conjuction, 1, 6)
- $(\forall x) +(0, x) = x$ $\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space$(modus ponens, 7, 8)
So this brings me to the end of the first induction, the result of which I seemingly am supposed to use to get to commutativity of addition. So I continued as follows:
- $+(0, b) = b$ $\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space$(universal instantiation, 9)
- $+(b, 0) = b$ $\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space$(A3 instantiation)
- $+(0, b) = +(b, 0)$ $\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space$(Leibniz's law, 10, 11)
- $(\forall x) +(0, x) = +(x, 0)$ $\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space$ (universal generalization, 12)
13 is the base case for the second induction. I've then tried to get the induction step by assuming $(\forall x) +(a, x) = +(x, a)$, and using this to find $(\forall x) +(S(a), x) = +(x, S(a))$ by conditional proof, with the plan to universally generalize over the dummy name 'a'.
However, I cannot seem to get it right – I keep ending up with, e.g., the wrong equivalences, and so cannot generate the correct generalization. But I don't know where I'm going wrong. Am I making the wrong assumption for the second conditional proof? Do I need something other than the information I've provided? Any help would be greatly appreciated.
Thanks!