2

I'm trying to prove the commutativity of addition in Peano arithmetic in something like a natural deduction system, but am stuck halfway (I say "something like a natural deduction system" because I don't really know how to format one here; I'll do my best to represent it, however). I must have gone wrong somewhere, but I cannot see how.

I am using axioms written as follows (leaving out those for multiplication):

A1. $(\forall x) S(x) ≠ 0$

A2. $(\forall x)(\forall y) (S(x) = S(y) \rightarrow x = y)$

A3. $(\forall x) +(x, 0) = x$

A4. $(\forall x)(\forall y) +(x, S(y)) = S(+(x, y))$

A5. Axiom schema of induction: For any formula $\phi$ built from =, $S$, +, with one free variable: $[\phi (0) \space\And\space (\forall x)(\phi(x) \rightarrow \phi(S(x)))] \rightarrow (\forall x)\phi(x)$

It's been recommended that I use the induction schema twice, first to prove $(\forall x) +(0, x) = x$, and then to get $(\forall x)(\forall y)+(x, y) = +(y, x) $. This is what I've done so far:

  1. $ +(0, 0) = 0$ $\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space$(A3 instantiation)
  2. $+(0, a) = a$ $\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space$(assumption)
  3. $+(0, S(a)) = S(+(0, a))$ $\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space$ (A4 instantiation)
  4. $+(0, S(a)) = S(a)$ $\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space$(Leibniz's law, 2, 3)
  5. $ +(0, a) = a \rightarrow +(0, S(a)) = S(a)$ $\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space$ (conditional proof, 2-4)
  6. $(\forall x) (+(0, a) = a \rightarrow +(0, S(a)) = S(a))$ $\space\space\space\space\space\space\space\space\space\space\space\space$ (universal generalization, 5)
  7. $[ +(0, 0) = 0 \space\And\space (\forall x) (+(0, a) = a \rightarrow +(0, S(a)) = S(a))] \rightarrow (\forall x) +(0, x) = x$ $\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space$(A5 instantiation)
  8. $+(0, 0) = 0 \space\And\space (\forall x) (+(0, a) = a \rightarrow +(0, S(a)) = S(a))$ (conjuction, 1, 6)
  9. $(\forall x) +(0, x) = x$ $\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space$(modus ponens, 7, 8)

So this brings me to the end of the first induction, the result of which I seemingly am supposed to use to get to commutativity of addition. So I continued as follows:

  1. $+(0, b) = b$ $\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space$(universal instantiation, 9)
  2. $+(b, 0) = b$ $\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space$(A3 instantiation)
  3. $+(0, b) = +(b, 0)$ $\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space$(Leibniz's law, 10, 11)
  4. $(\forall x) +(0, x) = +(x, 0)$ $\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space$ (universal generalization, 12)

13 is the base case for the second induction. I've then tried to get the induction step by assuming $(\forall x) +(a, x) = +(x, a)$, and using this to find $(\forall x) +(S(a), x) = +(x, S(a))$ by conditional proof, with the plan to universally generalize over the dummy name 'a'.

However, I cannot seem to get it right – I keep ending up with, e.g., the wrong equivalences, and so cannot generate the correct generalization. But I don't know where I'm going wrong. Am I making the wrong assumption for the second conditional proof? Do I need something other than the information I've provided? Any help would be greatly appreciated.

Thanks!

ata
  • 165
  • 1
  • 7
  • 2
    I did an exercise like this some years ago. It might be easier to first prove right-cancelability $(x+y = z+y \to x=z)$and associativity. – Dan Christensen Mar 31 '19 at 03:21

1 Answers1

4

You are using the same plan I would use. The two key lemmas are:

  • Lemma 1: $\forall q, +(q,0) = +(0,q)$. Proved by induction on $q$.

  • Lemma 2: $\forall p, \forall q, S(+(p, q))) = +(S(p), q)$. Proved by induction on $q$.

Given the lemmas, to prove the overall result, we prove $\forall x, \forall y, +(x,y) = +(y,x)$ by induction on $y$. The base case is Lemma 1. For the inductive case, we have this outline of the calculation: $$ \begin{split} +(x, S(y)) & =S (+(x,y))\\ &= S(+(y,x)) \\ &= +(S(y),x)). \end{split} $$ where the first line is from the definition of $+$, the second is the inductive hypothesis, and the third is lemma 2.

Carl Mummert
  • 81,604
  • 1
    Thanks, Carl! It looks like it's Lemma 2 that I'm missing. I don't think we've been provided it, so I'll have to prove it first. I can see how this will get me to where I need to go, but am nonetheless unsure that this is the intended route (though I don't see any other way at the moment!). – ata Mar 31 '19 at 00:58
  • Update: I think I've now figured out proofs for both the second lemma and the commutativity of addition (writing them out natural-deduction style isn't so fun). Thanks again for your guidance :) – ata Mar 31 '19 at 02:41
  • 2
    Great - I'm glad you got the proofs. I can sympathize with writing out all the details. – Carl Mummert Mar 31 '19 at 12:27