$\mathrm G$ is Catalan's constant.
I would like clarification on the following proof provided by @M.N.C.E.:
$$ \begin{align} &\int^\frac{\pi}{12}_0\ln(\tan{x})\ {\rm d}x\\ =&-2\sum^\infty_{n=0}\frac{1}{2n+1}\int^\frac{\pi}{12}_0\cos\Big{[}(4n+2)x\Big{]}\ {\rm d}x\\ =&-\sum^\infty_{n=0}\frac{\sin\Big[(2n+1)\tfrac{\pi}{6}\Big{]}}{(2n+1)^2}\tag1\\ =&\color{#E2062C}{-\frac{1}{2}\sum^\infty_{n=0}\frac{1}{(12n+1)^2}}\color{#6F00FF}{-\sum^\infty_{n=0}\frac{1}{(12n+3)^2}}-\color{#E2062C}{\frac{1}{2}\sum^\infty_{n=0}\frac{1}{(12n+5)^2}}\\ &\color{#E2062C}{+\frac{1}{2}\sum^\infty_{n=0}\frac{1}{(12n+7)^2}}\color{#6F00FF}{+\sum^\infty_{n=0}\frac{1}{(12n+9)^2}}\color{#E2062C}{+\frac{1}{2}\sum^\infty_{n=0}\frac{1}{(12n+11)^2}}\tag2\\ =&\color{#6F00FF}{-\frac{1}{9}\underbrace{\sum^\infty_{n=0}\left[\frac{1}{(4n+1)^2}-\frac{1}{(4n+3)^2}\right]}_{\mathrm G}}\color{#E2062C}{-\frac{1}{2}\mathrm G-\frac{1}{2}\underbrace{\sum^\infty_{n=0}\left[\frac{1}{(12n+3)^2}-\frac{1}{(12n+9)^2}\right]}_{\frac{1}{9}\mathrm G}}\tag3\\ =&\left(-\frac{1}{9}-\frac{1}{2}-\frac{1}{18}\right)\mathrm G=\large{-\frac{2}{3}\mathrm G} \end{align}$$
I understand how to obtain $(1)$, but I do not know how to go from $(1)$ to $(2)$ and then from $(2)$ to $(3)$.
A log of my attempts to find an alternate proof for the identity in question.
I tried to represent $(1)$ as a hypergeometric series because the $1/(2n+1)^2$ terms are after all what give us the identity $$_3F_2\left(\frac12,\frac12,1;\frac32,\frac32;-1\right)=\mathrm G$$ So I was hoping that $$\frac{\sin\left[\frac\pi6(2n+1)\right]}{\sin\left[\frac\pi6(2n+3)\right]}=-1$$ But alas this is not the case. I see now that I would be missing an extra factor of $2/3$.
Another, more realistic attempt of mine comes by noting that $$\sin\left[\frac\pi6(2n+1)\right]=\frac{\sqrt3}2\sin\frac{\pi n}3+\frac12\cos\frac{\pi n}3$$ So, by letting $K$ be $-1\cdot$(the quantity $(1)$), we have that $$K=\frac{\sqrt3}2S+\frac12C$$ Where $$S=\sum_{n\geq0}\frac{\sin\frac{\pi n}3}{(2n+1)^2}$$ and $$C=\sum_{n\geq0}\frac{\cos\frac{\pi n}3}{(2n+1)^2}$$ Although neither of these seem to have a 'nice' $_pF_q$ representation. I have run out of ideas for proving that $K=\frac23\mathrm G$.