Evaluate $\lim\limits_{x\to 0^{+}}(\ln(x)-\ln(\sin x))$
My trial
As $x\to 0^{+},\;\ln(x)\to \infty$ and $\ln(\sin x)\to \infty.$ So,
\begin{align}\lim\limits_{x\to 0^{+}}(\ln(x)-\ln(\sin x))=\lim\limits_{x\to 0^{+}}\ln\left(\frac{x}{\sin x}\right)\end{align}
This should result to $\infty$ but I may be wrong. If I am wrong, how do I apply L'Hopital's rule to this?