Let $\mathbb{R}^+$ denote the set of positive real numbers. Group isomorphism $h_b:(\mathbb R,+)\to (\mathbb R^+,\times)$ can be given by the exponential function: $h_b(r)=b^r$, where $b$ is a positive real number and is not $1$. Moreover, after we define the group automorphism $A_x:(\mathbb R^+,\times)\to (\mathbb R,+)(r\mapsto xr)$, the set of all exponential functions(with positive base) are related by $h_k(r) = h_bA_rh_b^{-1}(k)$, with $A_r$ the automorphism defined above.
I start to wonder that is this the only possible way to construct the isomorphism? Are there any isomorphisms $i:(\mathbb R,+)\to (\mathbb R^+,\times)$ different from the exponential function?(It needs not to be continuous) But what about the case if we are looking for a continuous isomorphism?