In the proof of Jordan decomposition here, once I know that an indecomposable subspace $V$ is of the form $V=Ker((f-\lambda Id)^n)$, can there be an other eigenvalue $\mu$ for $f\vert_V$?
Asked
Active
Viewed 44 times
1 Answers
1
No. If $(f-\lambda I)^n = 0$ on $V$ and $f v = \mu v$ for some $v \in V$, then $(f -\lambda I) v = (\mu - \lambda) v$ so $0 = (f - \lambda I)^n v = (\mu - \lambda)^n v$, which implies either $\mu = \lambda$ or $v = 0$.

Robert Israel
- 448,999