A different approach. Consider $x^{2n}-2x^n\cos(na)+1=0 ,\ n\gt0 \, , a\gt 0$. This gives you $x^n=\exp \pm i na$. or $x=\exp \pm i\left(a+\frac{2\pi k}{n}\right), \ k=0, 1, 2,\ldots , n-1$.
$$\begin{aligned}x^{2n}-2x^n\cos(na)+1&=0\\ \prod_{k=0}^{n-1}\left(x-\exp i\left(\dfrac{a+2\pi k}{n}\right)\right)\left(x-\exp i\left(-\dfrac{a+2\pi k}{n}\right)\right)&=0\\ \prod_{k=0}^{n-1}\left[ x^2-2x\cos\left(a+\dfrac{2\pi k}{n}\right)+1\right]&=0\end{aligned}$$
Let $x=1$ and set $a=2b$. $$\begin{aligned}\prod_{k=0}^{n-1}\left[1-2\cos\left(2b+\dfrac{2\pi k}{n}\right)+1\right]&=0\\ \prod_{k=0}^{n-1}\left[2-2\cos2\left(b+\dfrac{\pi k}{n}\right)\right]&=0\end{aligned}$$
$$\begin{aligned}\prod_{k=0}^{n-1}\left[2-2\cos2\left(b+\dfrac{k\pi}{n}\right)\right]&=2-2\cos\left(2nb\right)\equiv4\sin^2\left(nb\right)\end{aligned}\tag1$$
Also $$\begin{aligned}2-2\cos2\left(b+\dfrac{\pi k}{n}\right)&=2-2\left[\cos^2\left(b+\dfrac{\pi k}{n}\right)-\sin^2\left(b+\dfrac{\pi k}{n}\right)\right]\\&=4\sin^2\left(b+\dfrac{k\pi }{n}\right)\end{aligned}\tag2$$
Equate $(1)$ and $\prod_{k=0}^{n-1}(2)$ and take square root of both sides to get the desired result.
$$\begin{aligned}\sqrt{4\sin^2\left(nb\right)}&=\sqrt{\prod_{k=0}^{n-1}4\sin^2\left(b+\dfrac{k\pi }{n}\right)}\\2\sin \left(nb\right)&=2^n\prod_{k=0}^{n-1}\sin\left(b+\dfrac{k\pi }{n}\right)\\ \dfrac{\sin\left(nb\right)}{\sin b}&=2^{n-1}\dfrac{\sin\left(b\right)}{\sin b}\sin\left(b+\dfrac{\pi}{n}\right)\cdots\sin\left(b+\dfrac{(n-1)\pi}{n}\right)\end{aligned}$$
Now take the limit as $b\to 0^+$ which gives you: $$n=2^{n-1}\underbrace{\sin\left(\dfrac{\pi}{n}\right)\sin\left(\dfrac{2\pi}{n}\right)\cdots\sin\left(\dfrac{(n-1)\pi}{n}\right)}_{\text{Let it }=\varphi}\implies \boxed{\varphi =\dfrac{n}{2^{n-1}}}$$