The required integral, after substituting $\ u = bx,$ can be rewritten as:
$$\ I = \frac{1}{b}\cdot \int_0^{\infty} \frac{\cos(Au)}{\cosh u}du$$
Where $\ A = \frac{a}{b}$
Consider the Maclaurin expansion of $\cos(Au)$:
$$\cos(Au) = \sum_{n=0}^{\infty}(-1)^n \cdot \frac{(Au)^{2n}}{(2n)!}$$
Substituting this into the integral and rearranging the terms, we get:
$$ I = \frac{1}{b}\cdot \sum_{n=0}^{\infty}\frac{(-1)^nA^{2n}}{(2n)!} \cdot \int_0^{\infty} \frac{u^{2n}}{\cosh u} du $$
$$ I = 2\cdot \frac{1}{b}\cdot \sum_{n=0}^{\infty}\frac{(-1)^nA^{2n}}{(2n)!} \cdot \int_0^{\infty} \frac{u^{2n}e^u}{1+e^{2u}} du $$
As seen here, the integral inside the sum evaluates to $\Gamma(2m+1) \cdot \beta(2m+1) = (2m)! \cdot \beta(2m+1)$
Where $\beta(n)$ is the Dirichlet Beta function and $\Gamma(n)$ is the Gamma function.
Using this result, the integral evaluates to
$$ I = 2\cdot \frac{1}{b}\cdot \sum_{n=0}^{\infty}(-1)^nA^{2n}\cdot \beta(2n+1) $$
Consider the Taylor expansion of the hyperbolic secant function at $\ x = Az$:
$$\operatorname{sech}(Az) = \sum_{n=0}^{\infty}\frac{E_{2n}}{(2n)!}\cdot A^{2n}z^{2n}$$
Also consider the property of the Dirichlet Beta function:
$$\ (-1)^n \cdot \beta(2n+1) = \frac{E_{2n}}{2\cdot (2n)!} \cdot (\frac{\pi}{2})^{2n+1}$$
Where $\ E_n$ is the nth Euler number.
Substituting the previous identity into the integral, we get:
$$\ I = 2\cdot \frac{1}{b}\cdot \sum_{n=0}^{\infty} \frac{E_{2n}}{2\cdot (2n)!} \cdot A^{2n} (\frac{\pi}{2})^{2n+1}$$
$$ = \frac{1}{b}\cdot \frac{\pi}{2} \cdot \sum_{n=0}^{\infty} \frac{E_{2n}}{(2n)!} \cdot (A\frac{\pi}{2})^{2n}$$
$$ I = \frac{\pi}{2b} \cdot \operatorname{sech}(\frac{A\pi}{2})$$
Putting $\ A = \frac{a}{b}$, we get:
$$ I = \frac{\pi}{2b} \cdot \operatorname{sech}(\frac{a\pi}{2b})$$
Q.E.D.