Let $\Omega\subset\mathbb{R}^{n}$ be an open bounded domain. Let $W^{2}\left(\Omega\right)$ be the usual Sobolev space $$ W^{2}\left(\Omega\right)=\left\{ f\in L^{2}\left(\Omega\right):f,\partial_{i}f,\partial_{ij}^{2}f\in L^{2}\left(\Omega\right)\right\} . $$ Let $W_{0}^{2}\left(\Omega\right)$ be the closure of $C_{0}^{\infty}\left(\Omega\right)$ w.r.t. $W^{2}\left(\Omega\right)$-norm in $W^{2}\left(\Omega\right)$.
Question: is it true that $$ W_{0}^{2}\left(\Omega\right)=\left\{ f\in W_{0}^{1}\left(\Omega\right):\Delta f\in L^{2}\left(\Omega\right)\right\} ? $$ That is, the Laplacian controls $\partial_{ij}^{2}$ in $L^{2}\left(\Omega\right)$.