Given $n\in\mathbb N$, does there exist an $x\in\mathbb N$, s.t. for $i\in\mathbb N,\;i\leq n$, $\exists y_i,z_i\in\mathbb N$ such that each $y_i$ is distinct and
$$x^2 + y_i^2 = z_i^2$$
Given $n\in\mathbb N$, does there exist an $x\in\mathbb N$, s.t. for $i\in\mathbb N,\;i\leq n$, $\exists y_i,z_i\in\mathbb N$ such that each $y_i$ is distinct and
$$x^2 + y_i^2 = z_i^2$$
Yes: We know that $\forall n\in\mathbb N$, $x=2^{2n+1},y_i=2^{n+i}-2^{n-i},z_i=2^{n+i}+2^{n-i}$ is a triple for all $i\in\mathbb N,\;i\leq n$.