0

$a_1= \sqrt3 $ , all $n\geqq1$, $a_{n+1}=\sqrt{3+a_n}$, prove convergence of sequence ${a_n}$

How to prove... I don't know..

1 Answers1

2

$(a_n)$ is bounded because $a_n<3$ for all $n\in\mathbb{N}$. You can show this by induction:

  • $a_1<3$
  • $a_n<3\implies a_{n+1}=\sqrt{3+a_n}<\sqrt{6}<3$

Also, $(a_n)$ is monotonically increasing:

  • $a_{n+1}=\sqrt{3+a_n}>\sqrt{a_n+a_n}=\sqrt{2}\sqrt{a_n}>a_n$

We used that $a_n<3$ and thus $\sqrt{a_n}<\sqrt2$.

Because the series is monotonically increasing and bounded, it converges.

To find out the value $a$ it converges to, you have to solve $$a=\sqrt{3+a}\iff a^2=3+a\iff a=\frac12+\frac{\sqrt{13}}2\quad\text{because }a\geq 0.$$

log_math
  • 2,401