Another way to obtain result.
Are known trigonometric equalities
$$\tan(a+b) = \dfrac{\tan a+\tan b}{1-\tan a\tan b},\tag{Q1}$$
$$\tan\left(a+\frac\pi4\right) = \dfrac{\tan a +1}{1-\tan a},\tag{Q2}$$
$$\sec^2\left(a+\frac\pi4\right) = 2\dfrac{1+\tan^2a}{(1-\tan a)^2}.\tag{Q3}$$
Let $\,x= \tan (y+\frac\pi4),\quad dx=\sec^2(y+\frac\pi4)\,dy,\,$ then
\begin{align}
&I(1) = \int\limits_0^2 \dfrac{\frac\pi4+\arctan x-\frac\pi4}{1+4x}\,dx
= \dfrac\pi4\int\limits_0^2 \dfrac{dx}{1+4x}
+ \int\limits_{\large-\frac\pi4}^{\large\arctan\frac13} \dfrac {y\sec^2(y+\frac\pi4)\,dy}{1+4\tan(y+\frac\pi4)}\\
& = \dfrac\pi{16}\ln(1+4x)\bigg|_0^2
+ \int\limits_{\large-\frac\pi4}^{\large\arctan \frac13}\dfrac{2(1+\tan^2y)y\,dy} {(1-\tan y)^2\left(1+4\frac{\large\tan y+1}{\large1-\tan y}\right)}\\
& = \dfrac{\pi\ln3}8
+ \int\limits_{\large-\frac\pi4}^{\large\arctan \frac13}
\dfrac{2y\sec^2y\,dy}{(1-\tan y)(5+3\tan y)}\\
& = \dfrac{\pi\ln3}8 + \dfrac14\int\limits_{\large-\frac\pi4}^{\large\arctan \frac13}
y\left(\dfrac1{1-\tan y}+\dfrac3{5+3\tan y}\right)\sec^2y\,dy\\
& = \dfrac{\pi\ln3}8
+ \dfrac14\int\limits_{\large-\frac\pi4}^{\large\arctan \frac13}
y\,d\ln\dfrac{5+3\tan y}{1-\tan y}\\
& = \dfrac{\pi\ln3}8 + \dfrac y4\,\ln\dfrac{5+3\tan y}{1-\tan y}
\Bigg|_{\large-\frac\pi4}^{\large\arctan \frac13}
- \dfrac14\int\limits_{\large-\frac\pi4}^{\large\arctan \frac13}
\ln\dfrac{5+3\tan y}{1-\tan y}\,dy\\
& = \dfrac{\pi\ln3}8 + \dfrac{\dfrac\pi2-\arctan3}2\ \ln3
- \dfrac{\dfrac\pi2-\arctan3+\dfrac\pi4}4\ \ln5
- \dfrac14\int\limits_{\large-\frac\pi4}^{\large\arctan \frac13}
\ln\dfrac{1+\dfrac35\tan y}{1-\tan y}\,dy,\\
\end{align}
$$I(1) = \dfrac{3\pi - 4\arctan3}{16}\ \ln\dfrac95
- \dfrac14 J(p,y)\Bigg|_{\large y=-\frac\pi4}^{\large\arctan \frac13}
\Bigg|_{\large p=-1}^{\large\frac35},\tag1$$
where
$$J(p,y) = \int\,\ln(1+p\tan y)\,dy,\tag2$$
$$|p|\le 1,\quad |\tan y| \le1,\tag3$$
\begin{align}
&J(p,y) = \dfrac i2 \left(\operatorname{Li}_2\left(\dfrac{1+p\tan y}{1-ip}\right)
- \operatorname{Li}_2\left(\dfrac{1+p\tan y}{1+ip}\right)\right)\\
& + \dfrac i2\left(\ln\dfrac{1-i\tan y}{-1+ip}-\ln\dfrac{1+i\tan y}{-1-ip}\right) \ln(1+p\tan y) + \mathrm{constant}
\end{align}
(see also Wolfram Alpha),
$$\ \operatorname {Li}_2(z) = \sum\limits_{j=1}^\infty\dfrac{z^j}{j^2}\tag{Q4}$$
is the polylogarithm.
Is known that
$$\ln a = \ln|a| + i\arg a.\tag{Q5}$$
Taking in account conditions $(3),$ one can get
\begin{align}
&\dfrac i2\left(\ln\dfrac{1-i\tan y}{-1+ip} - \ln\dfrac{1+i\tan y}{-1-ip}\right)
= \dfrac i2\left(\ln\dfrac{1-i\tan y}{1+i\tan y} + \ln\dfrac{1+ip}{1-ip}\right)\\
& = \dfrac i2\left(-2iy + 2i\arctan p\right)
= y - \arctan p.
\end{align}
Therefore, under the conditions $(3)$ can be used expression in the form of
$$J(p,y) = \dfrac i2 \left(\operatorname{Li}_2\left(\dfrac{1+p\tan y}{1-ip}\right)
- \operatorname{Li}_2\left(\dfrac{1+p\tan y}{1+ip}\right)\right)
+ \left(y-\arctan p\right)\ \ln(1+p\tan y).\tag4$$
From $(1),(4),(Q1)$ should
$$I(1) = \dfrac{3\pi - 4\arctan3}{16}\ \ln\dfrac95
- \dfrac14 F(p,t)\Bigg|_{t=-1}\phantom{|\hspace{-38mu}}^{\large\frac13}
\Bigg|_{p=-1}\phantom{|\hspace{-38mu}}^{\large\frac35},\tag5$$
where
$$F(p,t) = \dfrac i2 \left(\operatorname{Li}_2\left(\dfrac{1+pt}{1-ip}\right)
- \operatorname{Li}_2\left(\dfrac{1+pt}{1+ip}\right)\right)
+ \arctan\dfrac{t-p}{1+pt}\ \ln(1+pt).\tag6$$
Finally,
$$\color{brown}{\boxed{\phantom{\bigg|\!}I_1\approx0.27442\,80145\,78530\ }}$$
(see also Wolfram Alpha calculations of constant and the final checking).
Numeric calculations give the same result.